\(\int \frac {(a+a \cos (c+d x))^{5/2} (A+C \cos ^2(c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [194]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 210 \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a^{5/2} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a^3 (32 A+49 C) \sin (c+d x)}{21 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (8 A+7 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 A (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)} \]

[Out]

2*a^(5/2)*C*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+2/7*a*A*(a+a*cos(d*x+c))^(3/2)*sin(d*x+c)/d/co
s(d*x+c)^(5/2)+2/7*A*(a+a*cos(d*x+c))^(5/2)*sin(d*x+c)/d/cos(d*x+c)^(7/2)+2/21*a^3*(32*A+49*C)*sin(d*x+c)/d/co
s(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)+2/21*a^2*(8*A+7*C)*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(3/2)

Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {3123, 3054, 3059, 2853, 222} \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a^{5/2} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {2 a^3 (32 A+49 C) \sin (c+d x)}{21 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {2 a^2 (8 A+7 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{7 d \cos ^{\frac {7}{2}}(c+d x)} \]

[In]

Int[((a + a*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(9/2),x]

[Out]

(2*a^(5/2)*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2*a^3*(32*A + 49*C)*Sin[c + d*x])/(
21*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]) + (2*a^2*(8*A + 7*C)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/
(21*d*Cos[c + d*x]^(3/2)) + (2*a*A*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(7*d*Cos[c + d*x]^(5/2)) + (2*A*(a
 + a*Cos[c + d*x])^(5/2)*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2))

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rubi steps \begin{align*} \text {integral}& = \frac {2 A (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 \int \frac {(a+a \cos (c+d x))^{5/2} \left (\frac {5 a A}{2}+\frac {7}{2} a C \cos (c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx}{7 a} \\ & = \frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 A (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {4 \int \frac {(a+a \cos (c+d x))^{3/2} \left (\frac {5}{4} a^2 (8 A+7 C)+\frac {35}{4} a^2 C \cos (c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{35 a} \\ & = \frac {2 a^2 (8 A+7 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 A (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {8 \int \frac {\sqrt {a+a \cos (c+d x)} \left (\frac {5}{8} a^3 (32 A+49 C)+\frac {105}{8} a^3 C \cos (c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{105 a} \\ & = \frac {2 a^3 (32 A+49 C) \sin (c+d x)}{21 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (8 A+7 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 A (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\left (a^2 C\right ) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a^3 (32 A+49 C) \sin (c+d x)}{21 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (8 A+7 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 A (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}-\frac {\left (2 a^2 C\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = \frac {2 a^{5/2} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a^3 (32 A+49 C) \sin (c+d x)}{21 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (8 A+7 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 A (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.43 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.72 \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {a^2 \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (84 \sqrt {2} C \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^{\frac {7}{2}}(c+d x)+4 (29 A+7 C+(93 A+84 C) \cos (c+d x)+(23 A+7 C) \cos (2 (c+d x))+23 A \cos (3 (c+d x))+28 C \cos (3 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{84 d \cos ^{\frac {7}{2}}(c+d x)} \]

[In]

Integrate[((a + a*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(9/2),x]

[Out]

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(84*Sqrt[2]*C*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^(
7/2) + 4*(29*A + 7*C + (93*A + 84*C)*Cos[c + d*x] + (23*A + 7*C)*Cos[2*(c + d*x)] + 23*A*Cos[3*(c + d*x)] + 28
*C*Cos[3*(c + d*x)])*Sin[(c + d*x)/2]))/(84*d*Cos[c + d*x]^(7/2))

Maple [A] (verified)

Time = 13.40 (sec) , antiderivative size = 246, normalized size of antiderivative = 1.17

method result size
default \(\frac {2 a^{2} \left (21 C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \left (\cos ^{4}\left (d x +c \right )\right )+21 C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \left (\cos ^{3}\left (d x +c \right )\right )+46 A \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+56 C \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+23 A \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )+7 C \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+12 A \sin \left (d x +c \right ) \cos \left (d x +c \right )+3 A \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{21 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {7}{2}}}\) \(246\)
parts \(\frac {2 A \sin \left (d x +c \right ) \left (46 \left (\cos ^{3}\left (d x +c \right )\right )+23 \left (\cos ^{2}\left (d x +c \right )\right )+12 \cos \left (d x +c \right )+3\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a^{2}}{21 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {7}{2}}}+\frac {2 C \left (3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+3 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+8 \cos \left (d x +c \right ) \sin \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a^{2}}{3 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {3}{2}}}\) \(247\)

[In]

int((a+cos(d*x+c)*a)^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x,method=_RETURNVERBOSE)

[Out]

2/21*a^2/d*(21*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*cos(d*
x+c)^4+21*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*cos(d*x+c)^
3+46*A*cos(d*x+c)^3*sin(d*x+c)+56*C*cos(d*x+c)^3*sin(d*x+c)+23*A*sin(d*x+c)*cos(d*x+c)^2+7*C*cos(d*x+c)^2*sin(
d*x+c)+12*A*sin(d*x+c)*cos(d*x+c)+3*A*sin(d*x+c))*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))/cos(d*x+c)^(7/2)

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 176, normalized size of antiderivative = 0.84 \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 \, {\left ({\left (2 \, {\left (23 \, A + 28 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} + {\left (23 \, A + 7 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 12 \, A a^{2} \cos \left (d x + c\right ) + 3 \, A a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 21 \, {\left (C a^{2} \cos \left (d x + c\right )^{5} + C a^{2} \cos \left (d x + c\right )^{4}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )\right )}}{21 \, {\left (d \cos \left (d x + c\right )^{5} + d \cos \left (d x + c\right )^{4}\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

2/21*((2*(23*A + 28*C)*a^2*cos(d*x + c)^3 + (23*A + 7*C)*a^2*cos(d*x + c)^2 + 12*A*a^2*cos(d*x + c) + 3*A*a^2)
*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - 21*(C*a^2*cos(d*x + c)^5 + C*a^2*cos(d*x + c)^4)*s
qrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c)^5 + d*cos(d
*x + c)^4)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**(5/2)*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(9/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1640 vs. \(2 (180) = 360\).

Time = 0.49 (sec) , antiderivative size = 1640, normalized size of antiderivative = 7.81 \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

1/42*(7*(30*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*a^(5/2)*sin(1/2*arctan2(s
in(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)
^(1/4)*((12*a^2*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) - 3*a^2*sin(2*d*x + 2*c)
 - 4*(3*a^2*cos(2*d*x + 2*c) + 4*a^2)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + (12*a^2*sin(2*d*x + 2*c)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c))) + 3*a^2*cos(2*d*x + 2*c) - a^2 + 4*(3*a^2*cos(2*d*x + 2*c) + 4*a^2)*cos(3/2*arctan2(sin(2*d*x + 2*c),
 cos(2*d*x + 2*c))))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 3*((a^2*cos(2*d*x + 2
*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^
2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4
)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
)) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c)))) + 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((cos(2*d
*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2
 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(s
in(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x
 + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)
^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x
 + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c
) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^
2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))*C/(c
os(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) + 16*(21*sqrt(2)*a^(5/2)*sin(d*x + c)/(cos(d*
x + c) + 1) - 56*sqrt(2)*a^(5/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 63*sqrt(2)*a^(5/2)*sin(d*x + c)^5/(cos(
d*x + c) + 1)^5 - 36*sqrt(2)*a^(5/2)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 8*sqrt(2)*a^(5/2)*sin(d*x + c)^9/(c
os(d*x + c) + 1)^9)*A*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^2/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)
*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + sin(d*x + c)^4/(cos(d*x
 + c) + 1)^4 + 1)))/d

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^{9/2}} \,d x \]

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^(9/2),x)

[Out]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^(9/2), x)